Sieve of Eratosthenes

Saksham

Sieve is an ancient and an ingenious way of calculating primes. It recursively eliminates all the multiples of a particular number up till a range and the left overs are essentially primes.

Computing primes up to 13

It was just a matter of defining the right data structure and computing the final set of primes

package sieve

import "sort"

// Sieve calculates prime
func Sieve(limit int) (out []int) {
    out = make([]int, 0)
    myMap := make(map[int]bool, 0)

    if limit <= 1 {
        return
    }

    // Populate all the numbers
    for i := 2; i <= limit; i++ {
        myMap[i] = true
    }

    // Check the numbers and false all the multiples
    for i := 2; i <= limit; i++ {
        for j := 2; (j * i) <= limit; j++ {
            if myMap[(i * j)] {
                myMap[(i * j)] = false
            }
        }
    }

    // Append only the positive found
    for k := range myMap {
        if myMap[k] {
            out = append(out, k)
        }
    }

    sort.Ints(out)

    return
}

I used a map of (int, boolean)to add all the element up to the limit (13 in my example above)

Initial Map has

[2] = true
[3] = true
[4] = true. .... [13] = true

Then I ran a simple for loop to iterate till the limit 13 on the map and mark all the multiples as false.

So it starts with 2 till 13 checking for every multiple and marking it false.

2*2 = 4
[4] = false
2*3 = 6
[6] = false
2*4 = 8
[8] = false
...

and finally for all elements which have a true against it I add it to the int[] and return it.

— THE – END —